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NONLINEAR POSITION SERVO DESIGN
USING THE QLQG/LTR METHOD

Jong Shik Kim·

(Received March 9, 1989)

A new nonlinear controller design method called the QLQG/LTR method is proposed. This method is related to the use of
s~atistical linearization, LQG/LTR, and IRIDF methods. It is applied to a position servo with Coulomb friction. The computer
simulatIOn results show that the QLQG/LTR control system can adapt automatically to changes in input magnitude.
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where

And measurement equations can be expressed as follows:

We assume that all the nonlinearities are symmetric and
single-valued. Then, the nonlinear plant dynamics(l) can be
linearized via statistical linearization techniques.

x (t) is the (n x I) plant state vector,
j(x(t)) is an (n x 1) vector,
u(t) is the (m x I) control input vector,
w(t) is the (p x 1) disturbance input vector.

If the statistically linearized system is stabilizable and
detectable, then the MBC(Model Based Compensator) can be
designed by the QLQG/LTR method. Fig. 1 shows the statisti­
cally linearized MBC and design plant.

(3)

(2):dtl = N(ox)x(t) +Bu(t) + rw(t)

y(t) = Cx(t) + v(t)

N(ox) is the (nX n) statistically linearized plant
matrix,

Ox is the standard deviation of the plant states.

y(t) is the (mxl) measured output vector,
v(t) is the (m x I) measurement noise vector.

where

where

1. INTRODUCTION

Most practical controllers for servo systems have been
designed through application of linear control design
methods. However, in general real systems are nonlinear and
there always exist modeling errors in mathematical models
of real systems. Therefore, sometimes we cannot obtain
satisfactory performance in linear control systems neglected
modeling errors and/or nonlinear effects.

The QLQG/LTR(Quasi-Linear Quadratic Gaussian control
with Loop Transfer Recovery) design method is proposed for
considering these problems in nonlinear systems. This design
method is the integration of statistical linearization of non­
linear systems, (Gelb, 1968; Atherton, 1975) TFL(Target
Filter Loop) design (Athans, 1986) LTR(Loop Transfer
Recovery) (Athans, 1986) using the cheap control
QLQR(Quasi-Linear Quadratic Regulator) problem (Beaman,
1984) and IRIDF(Inverse Random Input Describing Function)
methods. (Suzuki, 1985) This method is suitable to solve the
stability-robustness problem in nonlinear systems, especially
in nonlinear systems with hard nonlinearities such as Cou­
lomb friction, backlash and saturation.

In this paper, the QLQG/LTR method is applied to a
position servo with Coulomb friction. In order to show the
effectiveness of the QLQG/LTR method, the linear control
system using the LQG/LTR method (Doyle and Stein. 1981)
and the nonlinear control system using the QLQG/LTR
method are compared. It is found that the QLQG/LTR con­
trol system is relatively insensitive to reference input magni­
tude.

2. QLQG/LTR CONTROL METHOD
And the statistically linearized compensated plant dynamics
can be expressed as follows:

Nonlinear plant dynamics can be expressed as follows:
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i (t) = j(x(t)) +Bu(t) + rw(t) (l)

{ i(t)}_[N(Ox) -BG ]{x(t)}
i(t) - HC N(oz)-HC-BG z(t)

[
0 r ° ]{r(t)}

+ -H ° H w(t)
v(t)

where
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Fig. 1 Statistically linearized compensator and design plant

>1')

z (t) is the (n X 1) compensator state vector,
r(t) is the (m x 1) command input vector,
N (oz) is the (n x n) statistically linearized compen-

sator matirx,
Oz is the standard deviation of the compensator states,
G is the (m x n) control gain matrix,
H is the (n x m) filter gain matrix.

It is convenient to use the separation property (Kwaker­
naak, 1972) which is one of the special properties of the MBC
in order to select desired design matrices (G and H) system­
atically. We can choose the state vector for closed-loop
system xc(t) E R'n in order to describe the separation prop­
erty.

{
x(t) }xc(t) = x(t)

where

(5)

(7) Do loop shaping of the TFL.
(8) LTR using the cheap control QLQR problem.
(9) Solve the Lyapunov equation for the compensated

plant.
(10) Calculate the DF gains for nonlinearties.
(11) Compare the estimated DF gains with the computer:!

ones and repeat steps (6) through (11) until the difference
between them is small enough.

(12) Store the gains(filter, control and DF) and the standard
deviations(compensator states and filter innovations).

(13) Repeat the design procedure from steps (5) through (12)
for each operating point.

(14) Determine the relationships between the gains (filter,
control and DF) and the stationary statistics of the system, i.
e., H (Of), G( oz) and N (oz) where Of and Oz are the standard
deviations of the filter innovations and compensator states,
respectively.

(15) Synthesize the desired nonlinear functions via the
IRIDF techniques.

(16) Implement the final nonlinear controller and check the
time responses of outputs and controls by computer simula­
tion.

Then the statistically linearized QLQG/LTR control system
can be expressed as follows:

The 2n statistically linearized eigenvalues can be separated
into two distinct groups (det("l I ~ N +BG)and det("l I - N
+ HC)). It is now clear that the compensator design decom­
poses into finding G and H. We can select H from the TFL
design and G from the LTR procedure separately.

The design procedure of the QLQG/LTR control system is
as follows:

(1) Determine a mathematical model for the nonlinear
plant to be controlled.

(2) Analyze the linearized system via statistical lineariza­
tion techniques.

(3) Determine the design specifications.
(4) Determine the several zero mean white noise inputs

which should represent an operating range of interest.
(5) Select an operating point to design a linear controller.
(6) Estimate the DF(Describing Function) gains for the

nonlinearities at the selected operating point.

. [N-BG -BG]
x c(t) = 0 N ~ HC xc(t)

[
0 r 0 ]{r(t) }+ H r -H w(t)

v(t)
y(t)=[C O]xc(t)

(6)

The QLQG/LTR method uses loop shaping techniques
(Stein, 1981) to address the performance and stability­
robustness problem. By condsidering the fictitious process
and measurement noises instead of the real driving noises, we
can achieve desirable loop transfer functions which satisfy
the performance and stability-robustness requirements. How­
ever, since the driving noises and the fictitious noises are in
general different, we must solve the Lyapunov equation for
the compensated plant in order to calculate the stationary
statistics of the system.

Now, the major design procedure of the QLQG/LTR
method will be discussed in detail.

2.1 Design of the TFL
The structure of the TFL is shown in Fig. 2.
If we break the loop at the output or, equivalently, at the

error signal, we readily obtain the loop TFM(Transfer Func­
tion Matrix) Gf(s).

For loop shaping of Gf(s), fictitious process and measure­
ment noises are considered and the KFDE(Kalman Filter
Frequency Domain Equality) (Stein, 1984) is used. Then, the
statistically linearized design plant dynamics with fictitious
noises are:
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Modified CARE(Control Algebraic Riccati Equation) :

Q+SN +NTS_lSBBTS+ 1[1'(S, N, X) =0 (16)
p

where

Fig. 2 Structure of the target filter loop

x(t) = N(ax)x(t) +Bu(t) +U(t)
y(t) = Cx(t) +8(t)

(8)

X is the state covariance matrix,

1[1'ij(S, N, X) =2tr( S ::'j X)

Lyapunov equation:

(17)

where ~(t) is the fictitious process white noise, and 8(t) is
the fictitious measurement white noise, i.e.,

E[~(t)]=O, E[~(t)~T( rl]=!o(t- r)
E[8(t)]=0, E[8(t)8 T( r)]=,u!o(t- rl

where

(N-BG)X+X(N-BG)T +rwrT=o

W is the disturbance covariance matrix.

(18)

The matrix L and scalar ,u are available as design parame­
ters for the TFL design. The filter gain matrix based on the
fictitious noises is :

(9)

The LTR is accomplished by solving the cheap control
QLQR problem to recover the target filter loop shape. For the
solution of this problem to be valid, [N, B] must be stabiliza­
ble and [N, C] must be detectable.

For the LTR, we examine the limiting behavior of the
modified CARE (16) with Q=CTC as P--'O.

where P is the solution of the FARE(Filter Algebraic Riccati
Equation) :

CTC+SN +NTS_lSBBTS
p

+ 1[1'(S, N, X) =0 (19)

(10)

By using the KFDE, the following result is obtained. (Athans,
1986)

By the examination of the order of magnitude of each term in
Eq.(19) as p --. 0, the LTR condition for the statistically linear­
ized system is basically the same as in the linear case, i.e.,
(Kim, 1987)

(11) erc-(jpSB )(jpBTS )--'0 (20)

The above approximation provides valuable insight into the
selection of the design parameters Land ,u.

Substituting Eq. (15) into Eq. (20),

(21)

2.2 LTR Using the Cheap Control QLQR Problem
The QLQR problem combines use of statistical lineariza­

tion and LQR(Linear Quadratic Regulator) optimal control
theory. From Beaman's results, (Beaman, 1984) the QLQR
problem is summerized as follows:

lim!PG--. UC (22)
p-o

Cost (12)

which implies that

where U is the (mx m) unitary matrix, i.e., UTU=!.
Now we consider TFM of the MBC, K (s).

K(s) = G(s! - N +BG+ HC)~lH (23)
where

Q is a state weighting matrix,
p is a control weighting parameter.

If Re ,l;[N-BG]<O, Re ll i [N-HC]<O and lim!PG--' UC,
p-o

then the limiting behavior of the K(s) as P--'O is as follows:
(Doyle, 1981: Kim, 1988)

where

State
Control

Control gain

: x=Nx+Bu+rw
: u=- Gx

: G=lBTS
p

(13)
(14)

(15)

limK(s) --. [C(s! - N)~lB]-l[C(S! - N)]-l H]
p-o

= G-'(s) Gf(s) (24)

Using the limiting relation(24), the limiting behavior of the
loop TFM at the plant output, T(s) is:

S is the Riccati matrix. (25)



NONLINEAR POSITION SERVO DESIGN USING THE QLQG/LTR METHOD 89

with

where

(34)

(30)

(32)

(33)

(3])Y=(N-HC) Y+ Y(N-BG)T

Y(t) =0 for all t >0

Z=(N-BG)Z+Z(N-BG)T +HVH T

X=Z+X

In the optimal filtering process, H is defined by :

In the case of the QLQG/LTR design, the above simplifica­
tion cannot be applied. Because the (fictitious) design noise
and the real driving noise are mismatched intentionally, and
the fictitious white noise intensity of the command input R is
not zero.

In fact, the filter gain matrix is obtained from Eq. (9) which
is not the same as Eq. (30). Substitution of Eq. (9) into Eq. (29)
does not lead to Eq. (31). X is found from Eq. (27) using the
real process and measurement noises and fictitious command
inputs, while P is found from the FARE(10) using the ficti·
tious (design) noises.

Since the driving noises and the fictitious noises are in
general different, P will not be equal to X implying that Y
will not necessarily be zero for alii time. Thus, implementa­
tion of the QLQG/LTR method will in general lead to cor­
related estimator states and estimation errors. This can
readily be seen from the coupling between Eqs. (27), (28) and
(29).

The importance, however, is that none of the Eqs. (27)
through (29) can be simplified for easy determination of Z.
Secondly, X is not available as a result of the TFL design
process (only P is). Thirdly, even iif it were available and if
we could also determine Z easily, Eq. (34) does not hold for
correlated z(t) and x(t). Therefore, we must solve the
Lyapunov equation for the compensated plant(35) in order to
caculate the gains and stationary statistics of the states. The
Lyapunov equation for the compensated plant is derived from
Eq.(4) :

The result imples that for an LQG design the estimator states
and errors are uncorrelated stochastic processes. Substitution
of Y = 0 and R = 0 leads to a simplification of Eq. (28) for the
estimator state covariance:

This is a homogeneous differential equation in Y (t) with
initial condition Y(O) =0, which, of course, has the solution

Under the assumption of the optimal filtering process and
deterministic inputs, we can know z(t) and x(t) are uncor­
related from Eq. (32). This implies that

And we assume that command inputs are deterministic( R =

0). Substituting the optimal filter gain matrix(30) and R=O
into Eq. (29), Eq. (29) can be rewritten as :

(27)

(26)
- H

J
{ r(t) }
w(t)

H v(t)

X= (N(ox) - HC)X +X(N(ox) - HC) T
+HRH T+rwr T+HVH T

X=E[x(t) x(t) T],
X(O) =E[x(O)x(O) T]

X(O) =X(O)

where

The estimator state covariance propagation equation:

with

Z(O)=O

The estimator state·estimation error state covariance propa­
gation equation:

Z=(N(oz) -BG)Z+Z(N(oz) -BG)T +HCY
+ Y(HC)T +HRHT+HVH T (28)

Z(t) = E[z(t) z(t) T],
Y( t) =E[z(t) x(t) T]

2.3 The Lyapunov Equation for the Compensated
Plant

Determining the stationary statistics of the total closed­
loop system requires a little more thought than in the general
LQG(Linear Quadratic Gaussian control) design situation.
This is due to the fact that the fictitious (design) noise and the
real driving noise are not the same, in general, The target
Kalman filter is not an optimal filter for the real driving
noise. The TFL is designed to make the desired loop shape
with fictitious noise.

Now, let us derive the correlation between the estimator
(compensator) state z (t), and the estimation error state x (t)
= x(t) - z(t). For convenience we consider the statistically
linearized compensated plant dynamics which are expressed
in Eqn.(4). By redefining the state variable using the estima­
tion error state _t(t), we have the following:

We can now directly write the differential equations for
the state covariance matrices as shown in reference (Bryson,
1975). The estimation error state covariance propagation
equation:

Y=(N(ox) - HC) Y + Y(N(oz) - BG) T
+X(HC)T -HRH T-HVH T (29)

where

N,X,+X,N/ +r,w,r,T=o (35)

with

Y(O) =0 [N -BG J. [X YJ
N,= HC N-BG-HC ' X,= Y Z '
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The design specifications considered are as follows:

The nonlinear plant is linearized via statistical lineariza­
tion techniques. Then, statistically linearized plant can be
expressed as follows:

0] [0]o 0
liNG ,B= 0

-Bmlfm Ilfm

(36)

0]oo

o 1
o - NclfL
o -1
o 0

i (t) = N(ox)x(t) +BuW
y(t) =CxW

I L is the load and gearbox output shaft inertia,
IL =0.0426kg.m'

Tc is the magnitude of the load Coulomb friction,
Tc=O.I N.m

N c is the DF for the Coulomb friction,
x(t) is the (4 x I) plant state vector,
y(t) is the output,
u( t) is the control input.

and C= [1

where

[ oro] fROO]r,= -H 0 H ,W,= 0 W 0
o 0 V

3. PROBLEM FORMULATION FOR
A NONLINEAR POSITION

SERVO DESIGN

If we consider the correction term(I7) in the cheap control
QLQR problem, then the modified CARE(l6) and Lyapunov
equation for the compensated plant(35) must be solved simul­
taneously with the guessed unknown variables(X,; n(2n+ 1),
5 ; n( n + I) 12) where n is the number of design plant states.
It is very difficult to find a solution for high order systems. In
addition, it requires a great deal of computation time. If we
neglect the correction term in the cheap control QLQR prob·
lem, the CARE and Lyapunov equation are not coupled.
Then, these two equations can be solved separately.

Fortunately, the correction term I[f is not dominant for the
good LTR case, i.e., lim I[f --> 0, (Kim, 1987) Therefore, we can

p~o

neglect the correction term under this situation. Then, we can
calculate the control gains from the LTR procedure and the
stationary statistics of the system from the Lyapunov equa·
tion separately. By neglecting the correction term, the
required computation is much simpler and we can obtain a
solution satisfactor.

(1) Steady state tracking error should be zero for an arbi­
trary constant input.

(2) Gain crossover frequency should be about 10 rad/sec.
(3) The singular value of the sensitivity TF(Transfer Func­

tion) should be less than - 20db for all w < 1 rad/sec for the
good command following and disturbance rejection.

(4) The singular value of the closed·loop TF should be less
than - 20db for all w> 100 rad/sec for the stability robustness
to unmodeled dynamics.

Since the plant has a free integrator, it is not necessary to
augment with an integrator in order to meet the design
specification(I). Therefore the DPM(Design Plant Model) can
be chosen by Eq. (36), and the MBC is expressed as follows:

z(t) is the (4 x I) compensator state vector,
N(oz) is the (4X4) statistically linearized compen·

sator matrix,

A position servo disign problem from robotics is selected as
a nonlinear control system design example using the QLQGI
LTR method. A block diagram of the nonlinear plant is
shown in Fig. 3. The state variables and parameters of the
plant are given below:

eL(Xl) is the load displacement,
BL(X,) is the load angular velocity,

( )
is the angular displacement movement of the

eo X3 gearbox output,
Bm(X4) is the motor angular velocity,
T m( u) is the actual mechanical torque delivered by the

motor,
I m is the motor and gearbox input inertia,

I m = 1.42 x 1O- 5kg. m'
Bm is the motor plus gearbox input shaft damping

coefficient,
B m = 2x IO- 4 N.m/rad/s

N G is the gear ratio,
NG=IOO

KG is the gearbox stiffness measured at the output,
KG = 6000N.m/rad

where

z (t) = N(oz) z( t) +Bu( t)
+H(y(t) - CzW - r(t)) (37)

Fig. 3 Block diagram of the nonlinear plant
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H is the (4 x 1) filter gain matrix,
r(t) is the command input.

And control law is as follows:

u(t) = - Gz(t)

where

G is the (1 x 4) control gain matrix.

(38)

can design the LQG/LTR compensator with a guarantee of
the LTR. The structure of the linear feedback control system
using the LQG/LTR method can be shown in Fig. 4.

The LQG/LTR method involves two basic steps(TFL
design and LTR). In the first step the TFL is designed for the
desired loop shaping. In this case the TFL can be designed by
cancelling the open-loop poles except for the free integrator,
which provides an optimal shape. (Kim, 1988) Then, the
design parameter L is selected as follows:

By combining Eqs. (36) and (37), the statistically linearized
compensated plant dynamics are expressed as follows:

(41)

{
:X(t)} [N(Ox) -BG ]{x(t)}
i(t) - HC N(oz)-HC-BG z(t)

+[ __~ ]r(t) (39)

4. CONTROL SYSTEM DESIGN

4.1 Linear Controller Design Using the LQG/LTR
Method

We should have a linear plant to apply the LQG/LTR
method. The Coulomb friction nonlinearity( Tc.sgn(x)) is
assumed as a linear one(x). Then we can design the LQG/
LTR compensator for the assumed linear plant. In order to
apply the LQG/LTR design procedure, the DPM dynamics
are expressed as follows:

where

Z c is the (n x n) matrix containing as its columns the
coefficients of the constituent zero polynomials of
the Gfo,(s) (=C(S!-A)-lL) transfer function,

Zd is the desired zero polynomial.

To determine the filter gain matrix H the desired cross­
over frequency was specified as 10rad/sec. A value of 0.008
for fl. is found to provide a crossover frequency of about
llrad/sec for the TFL which ;s shown in Fig. 5. This leaves
us with some safety margin in the recovery phase.

After selecting Land fl. to satisfy the desired target filter
loop shaping, we calculate the filter gain matrix H from Eqs.
(9) and (10). The resulting filter gain matrix H is:

i (t) = Ax(t) +Bu(t)
y( t) = Cx(t)

where

(40)

[

0 1
A= 0 -1!JL

o -1
o 0

and C=[1 o o

o
KelJL

o
- KelJmNe

0]

0] [0]o 0
liNe ,B= 0

-BmlJm IIJm

N ext, the LTR is attempted with the cheap control linear
quadratic regulator problem. We usually recover the TFL up
to a decade beyond the crossover frequency. This level of
recovery is obtained with a value of 0.01 for p. Then the
control gain matrix G is calculated from Eq. (15) and the
standard CARE which is Eq. (16) without correction term(Eq.
(17)) .

The above DPM is found to be completely controllable
from the input u(t) and completely observable through the
output y ( t), and it is a minimum phase plant. Therefore, we

.1'1 1

Model-Bued Compenllator : K(8)

G=[GI Gz G3 G4]
= [10 0.034 8.15 0.0013]

1'1'.1: GIl)

Fig. 4 Linear feedback control system using the LQG/LTR method
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rice (n·c)

Fig. 8 Step responses for the LQG/LTR control system

Fig. 7 Singular value of the open-loop TF for the nonlinear
plant with the LQG/LTR compensator

Table 1 Control gains at all operating points

R 10 ' 10 z 10 3 10 ' 10- 5 10-· 10-7

G, 10 10 10 10 10 10 10
Gz .028 ,028 .028 ,030 .032 .034 .030
G3 9.93 9.90 9.81 9.55 8.91 7.71 5.58
G, ,0015 .0015 .0015 .0015 .0014 .0013 .0011

The relationship between the DF gain for Coulomb friction
and the standard deviation of Ozz is shown in Fig. 9, and the
desired nonlinear function for the Coulomb friction nonlinear­
ity is obtained via the IRlDF techniques. This procedure can
be done in an iterative way, each time improving upon the
approximation until the desired level of accuracy has been
reached. The final result of the desired nonlinear function is
shown in Fig. 10. Then we can synthesize the nonlinear

4.2 Nonlinear Controller Design Using the QLQGj
LTR Method

We should have the statistically linearized plant(36) and
select several opearting points to cover an operating range of
interest to apply the QLQG/ LTR method. The zero mean
white noise intensities of the command inputs( R) are selected
between 10- 1 and 10-7 • Steps(6) through (11) of the QLQGj
LTR design procedure which is shown in seeton 2 are execut­
ed for a linear design at each selected operating point. Only
the final results will be discussed here. Note that for each
linear design the design uses an iterative process which
terminates when the difference between the estimated and
computed DF gains is small enough.

The gains(filter, control and DF) and the stationary
statistics(compensator states and filter innovation) are stored
for all linear designs. The filter gains have the same values as
the LQG/LTR case. The control gains at all different operat­
ing points are shown in Table l.
Since e, is constant for any input and ez, e3 and e. are
almost constant, we can select the constant control gain
matrix e as follows:

e= [e, ez e3 e.]
= [10 0.03 9.55 0.0015]

command inputs(R) are 10- 1, 10-' and 10-7 which represent
large, medium and small input cases, respectively. The singu­
lar value plot for the open-loop TF and the normalized step
responses for the nonlinear plant with the LQGjLTR compen­
sator are shown in Fig. 7 and Fig. 8, respectively.

The LQGjLTR control system satisfies the stability­
robustness condition for any input, but it does not satisfy the
performance requirements for small inputs. In the time
response, there is a steady state error of about 0.2 for any
constant input. This is due to the effect of the Coulomb
friction. A linear compensator whithout a free integrator in it
creates a steady state error for a constant input, even if a free
integrator action is in the plant which has Coulomb friction.
In addition, some overshoot exists for large input and the
system response is very slow for small input. Therefore, the
linear LQT jLTR compensator cannot be used for a large
operating range, In order to satisfy the performance and
stability-robustness for the entire operating range, a non­
linear compensator considering the effect of the Coulomb
friction is required.
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The recovered open-loop TF is shown is Fig. 6. The recov­
ery is good up to a decade beyond crossover frequency -the
additional roll-off introduced at that point will enhance the
stability-robustness.

Now let us check the performance and stability-robustness
for the nonlinear plant with the LQGjLTR compensator. For
this purpose, we check the frequency responses for 3 different
command inputs. We assume the command inputs as zero
mean white noises for the statistical linearization of the
nonlinear plant. The white noise intensities of the selected
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Fig. 12 Singular value of the open-loop TF for the QLQG/LTR
control system

Fig. 13 Step responses for the QLQG/LTR control system

QLQG/LTR compensator as shown in Fig. 11.
The singular value plot for the open-loop TF and the

normalized step responses for the nonlinear position servo
with the QLQG/LTR compensator are shown in Fig. 12 and
Fig. 13, respectively. The system responses are desirable in
both the frequency domain and the time domain. The settling
time is about 0.4 seconds and no overshoot exists for any
input. Since the nolinear QLQG/LTR compensator adapts to
changes in input magintude satisfactorily, the system
responses are insensitive to the input magnitude. In addition,
no steady state error exists for any constant input.

5. SUMMARY AND CONCLUSIONS

The nonlinear QLQG/LTR design method has been c1evel-

oped and the LQG/LTR and QLQG/LTR compensators are
designed for a nonlinear position servo with Coulomb fric­
tion. In the frequency domain, the LQG/LTR control system
satisfies the design specifications for a small input range, but
the QLQG/LTR control system satisfies them for the entire
operating range (OS < r < 50"). Also, the time response of the
LQG/LTR control system is not good. There exists a steady
state error for a constant input even if the system has a free
integrator, because the LQG/LTR compensator cannot adapt
to the effect of the Coulomb friction. In addition, there is
some overshoot for large inputs and the system response is
very slow for small inputs. However, for the QLQG/LTR
case, the system responses are insensitive to the input magni­
tude and have no overshoot, no steady state error and fast
settling time for all operating ranges. This is so because the
QLQG/LTR compensator can adapt to the effect of the
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Coulomb friction, since the statistical linearization retains a
considerable part of it in the design plant model.
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